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We propose new models to induce a hierarchy over a set of tags in a so-
cial tagging system, also known as a folksonomy. A heirarchy is a set of
hypernym hyponym relationships that forms a spanning forest over the set
of tags Such a heirarchy induces a structure on the classes of the ontology
built from all the tags. This ontology could then be used to provide better
information retreival algorithms to search for tags on the website. It can
also be used to suggest tags that a user might have missed while posting his
question based on the tags he included. We compare hierarchical clustering
based solely on the tag descriptions with a method that first classifies tags
into classes and then performs hierarchical clustering on the classes, and
finally a method that looks at each tag as a set of posts, and considers two
tags to be linked in a parent-child relationship if one tag’s set of posts is
close to a subset of the other’s set of posts.
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1. INTRODUCTION

Communities that are built around user-generated content often de-
velop tagging systems to organize their large corpora of documents.
These tagging systems become vast, and they depend upon the con-
tent creators to appropriately label their contributions to the com-
munity. However, it is often difficult for users, particularly those
who are new and inexperienced, to accurately classify their sub-
missions in full detail. As a result, discovery of relevant documents
becomes more difficult, and these communities are less effective
than they could be.

Furthermore, a tag hierarchy can prove useful in searching a
database of community-generated content. One of the main reasons
to tagging community contributions is to improve search quality by
interpreting the tags as alternate descriptions of community contri-
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Fig. 1. The conventional model of a folksonomy as a set of disconnected
tags, as compared to a more semantically accurate model as a forest.

butions. Information retrieval research has already explored how to
use alternate descriptions of a document to improve results: indeed,
even the single BM25 retrieval method has seen at least two papers
devoted to this very topic, one on the subject of extending BM25 to
multiple fields [Robertson et al. 2004], and one on extending BM25
to XML documents with hierarchical fields [Lu et al. 2006].

Given a tag hierarchy, though, this work could be extended even
further. The tag hierarchy is similar to an ontology, or relationship
between a set of concepts within a domain. Mandala and other au-
thors examine the use of WordNet to improve information retrieval
performance, and two problems they solve relate to missing data in
WordNet: WordNet is missing many terms, and many relationships
between even the terms it contains [Mandala et al. 1998]. Part of
the reason for these problems is that the construction of a database
such as WordNet is laborious and expensive, and part of the reason
is that WordNet is not meant to contain all terms and relationships.
WordNet has hitherto not focused on specialized technical terms,
and focuses on synonym, hypernym, and hyponym relationships
between terms. Social tagging might be able to fill in these gaps,
because a large number os social tagging systems exist as part of
forums, question-and-answer sites, wikis, and blogs (a particular
blog usually has tags only from one author, but the set of all blogs
devoted to a particular topic comes from a wide variety of authors,
making this set of blogs similar to a single very large forum or
wiki).

We propose a system that can analyze a folksonomy, which is
a set of community-generated tags, in association with a corpus
of documents labeled from that folksonomy, and develop a hier-
archy of those tags. Currently, tags are often represented as com-
pletely disconnected members of a large set, but they often fall nat-
urally into a set of hierarchical trees. For instance, an existing sys-
tem might represent the tag set {windows, linux, operating-system,
C++}, but the correct hierarchy is {windows : operating-system,
linux : operating-system, operating-system, C++} (Figure 1).

We define a hierarchy as a forest of rooted trees, in which each
node represents a distinct tag. The hierarchy should be organized
not simply by a definitional hypernym-hyponym relationship, but
such that when a document is labeled with a particular tag, it should
be labeled with all of that tag’s ancestors in the hierarchy. In this
way our hierarchy captures the conceptual model of tagging that
practiced by users of community-generated content collections to
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label documents with the most complete descriptions of their con-
tent.

These hierarchical relationships have several applications in the
context of community-generated content aggregators. By integrat-
ing this data into search, more accurate results can be returned to
the user, by expanding the input search terms to consider related
tags. These hierarchies also have applications in tag suggestions,
so that a user entering a specific term, such as “wostringstream”
would be suggested other tags which are ancestors in the hierarchy,
such as “cstringw”, “c++”, “mfc” and “unicode”, though the sug-
gested tags may not have direct hypernym-hyponym relationships
to the original tag.

2. DATASET

Our results were obtained over the StackOverflow dataset, which
is the largest and most well-developed of the StackExchange net-
work of question-and-answer sites. In our analysis, we consider
the corpus of questions asked on StackOverflow as available in
March 2013, the set of tags available at that time, and the set of
community-generated descriptions associated with those tags.

The presence of community-generated tag descriptions along-
side the tags and posts themselves offers an degree of information
about the tags that is not present in most community-generated,
tagged corpora. This information allows these tags to be compared
directly, rather than through secondary information such as associ-
ations with posts or users that is typically the only data available on
a folksonomy.

We define our folksonomy as a tuple F := (T, P,L) where T is
the set of all tags present in the dataset, P is the set of all posts, and
L : P → P(T ) is a mapping from a post to its set of labeling tags.
For our StackOverflow dataset, |P | = 4708656, |T | = 32403,
and

∑
p∈P |L(p)| = 13671739. Our analysis is restricted to posts

which possess at least one tag, and tags which label at least one
post.

3. RELATED WORK

Existing models of tag suggestion do not consider the natural hi-
erarchical relationships present in a folksonomy. As a result, their
effectiveness is limited to suggesting other tags which have been
observed in conjunction with the tags that have already been input.
This model relies on a large portion of users to accurately label their
content all the way up the hierarchy of the folksonomy; however,
many users will only label near the bottom of the tree.

Cattuto explores a variety of algorithms for analyzing the rela-
tionships between tags in a folksonomy [Cattuto et al. 2008]. How-
ever, these algorithms only capture relationships that occur directly
between each pair of tags. In this way, all of the algorithms pre-
sented by Cattuto stop short of leveraging the inherent hierarchy
across the folksonomy.

Research has also been done into automatically extracting
hypernym-hyponym pairs from text documents for building hier-
archical models [Snow et al. 2004]. Snow’s research has little ap-
plicability to the problem of constructing folksonomy hierarchies,
however. Firstly, the user-generated content over which the folk-
sonomy hierarchy is to be used is unlikely to contain the relation-
ships that this algorithm could find in its text, because the tags
themselves are not typically referenced in the body of the post.
Additionally, Snow relies upon a hypernym-hyponym model ex-
pressed “A is a B”, and similar such relationships, which is not
an appropriate model for analyzing user-generated content folk-

Fig. 2. Dendrogram representing the hierarchy based on tag description
comparisons. Observe the rightward imbalance, indicating that the hierar-
chy contains many singleton nodes at high levels.

sonomies. In these corpora, the hierarchy must express that when a
document is related to tag A, it is also implicitly related to B.

4. CLUSTERING BY DESCRIPTION SIMILARITY

The StackOverflow dataset provides not only a corpus of posts and
their associated tags, but also detailed community-generated de-
scriptions of these tags. These descriptions suggest the opportunity
to directly analyze the tags against each other in order to discover
clustering relationships and build a hierarchy. Intuitively, one is
likely to assume that the descriptions of related tags would pos-
sess similarities that would become apparent as a linkage in the
clustering process. In short, we treat each tag as a document, and
apply hierarchical clustering to those documents, which has been
well-studied in the information retrieval community [Zhao et al.
2005].

We construct a description correlation graphD in order to model
the relationship between tags on the basis of their descriptions. Let
the vertex set DV = T , let w(t) return the set of all words in
the description of the tag, and let the edge weights be defined by
Equation 4 below.

tf(t, d) =
freq(t, d)

maxw∈d freq(w, d)
(1)

idf(t,D) = log
|D|

|d ∈ D : t ∈ d|
(2)

W (i, j) =
∑

t∈w(vi)∩w(vj)

tf(t, vi) · tf(t, vj) · idf(t,
⋂
p∈P

w(p))

(3)

Eij = e−W (i,j) (4)

Note that the tf term is large for a given word if it is highly fre-
quent in a given document but is rare throughout the corpus signi-
fying it is important. For each word t, W (i, j) will have a corre-
sponding large term only if tf(t) is large for both the descriptions.
This implies that the word occurs frequently in both descriptions
but rerely in the rest of the corpus. This would imply that the two
descriptiptions are similar. Since W (i, j) is a similarity metric, we
used eW (i,j) as a distance metric for clustering.
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Consider also the hierarchy graph H , where initially HV = T
and HE = ∅. Our algorithm to produce a hierarchy across the tags
then proceeds as follows: At each iteration, select the edge of max-
imum weight. Let the two vertices connected by these edge be X
and Y . We create a new node Z and weight its edges as given by
Equation 5. Then remove the two vertices X and Y from D and
merge the corresponding nodes in H .

W (vi, Z) =W (vi,X) +W (vi, Y ) (5)

At the end of this progressive merging operation, we are left with
a single vertex in D, and a single tree in H .

An intuitive expectation would be that similar concepts would
have possessed similar descriptions. However, we found that clus-
tering on the basis of similarities between the tags’ descriptions
using tfidf did not produce a model which could discover relation-
ships between even very similar tags.

We also tried assigning each discription with a vector containing
a feature for each word in our dictionary and clustering based on
the cosine distance between two discriptions. This did not however,
turn up significantly better results; the tree still resembeled a linked
list.

Since the algorithm clustered from bottom up to build a tree, if
it encountered poor edges in the lower levels of the tree, it might
give poor top level clusters. To this end we attempted to train a
multiclass SVM [Chang and Lin 2011] to partition the tags into six
classes and then build a tree in each class. We hand annotated a
hundred tags into one of six classes and used this as training data
to classify the remaining tags. To do this we used an inverted list
of all the posts fo each tag. The inverted list for a tag is simply the
set of the post IDs that are marked with that tag. We can view this
inverted list as a sparse vector with a one if it is a tag of the ith post
and a zero otherwise. Given these inverted lists, we used an RBF
kernel to build the SVM. Further, we used 5 fold cross validation
to select C and γ for the model. However, when cross validating
to evaluate the performance of this algorithm, the best we could do
was a success rate of 0.28. Hence the results from this approach
were not very good.

5. SOFT SUBSET HIERARCHY

We propose a new method for constructing a hierarchy over a folk-
sonomy which labels an existing document corpus. The intuition
of our method is that a tag which frequently occurs in conjunc-
tion with another tag is a likely child of that tag in our hierarchical
model. Because it measures only the sets of posts which are la-
beled with each tag, this method also does not rely on quality tag
descriptions, as the above clustering process does. Thus it is both
more widely applicable to other community-generated, tagged cor-
pora which may not possess internal tag definitions, and also it is
more responsive to revisions to those corpora, for the distributions
of tags across the dataset is continually evolving, but the descrip-
tions of the tags are relatively stagnant.

We begin by defining the relation A : T → P(P ) which maps
a tag to the set of all posts that it labels. This function is used to
construct the tag correlation graph C with the vertex set CV := T
and the edge weights defined by Equation 6 below. Self-loops are
ignored when constructing the graph, as their weight would always
be equal to 1, and they have no value in constructing a hierarchy.

W (vi, vj) =
|A(vi) ∩A(vj)|

min[|A(vi)|, |A(vj)|]
(6)

Table I. Number of Unpruned Relationships in
Soft-subsets by Threshold

0.05 341,228 0.10 185,941

0.15 116,981 0.20 90,948

0.25 70,895 0.30 54,007

0.35 40,740 0.40 36,574

0.45 31,471 0.50 29,364

0.55 20,377 0.60 18,371

0.65 16,099 0.70 13,538

0.75 12,150 0.80 10,376

0.85 8,720 0.90 7,494

0.95 6,322 1.00 5,610

A significant correlation is defined as occuring when the size of
the intersection is greater than or equal to some ratio α to the size
of the smaller post set. If such a correlation is observed, the pair-
ing is recorded as a parent-child relationship where the tag with
the greater number of associated posts is the parent, and the lesser
number of posts is the child. Table I shows the quantity of rela-
tionships that are captured at various values of α. The range of
captured relationships is fairly narrow, in comparison to the total
|T |2 = 533, 863, 887 possible relationships. Therefore we reason
that the choice of α has little effect on the resulting hierarchy. We
provide an example post with suggestions in Figure 4 which com-
pares a threshold of 0.75 to a threshold of 0.50.

Since each child is smaller than its parent we do not introduce
any cycles into the graph over our folksonomy, and therefore it re-
mains topologically sortable and thus a hierarchy. To simplify the
output graph, we consider all parents of each tag, and if that parent
is reachable by a longer path, meaning that there is some interme-
diate tag which is a descendent of the parent and an ancestor of the
child, we remove the edge in question (Figure 3). In this way we
ensure that there is only one path between a tag and each of its an-
cestor tags, and that this path passes through as many intermediate
levels of the hierarchy as possible.

Lastly, to ensure that the hierarchy is represented as a forest
of disjoint trees, we apply the Chu-Liu/Edmonds algorithm [Tar-
jan 1977] to the graph to select the best single parent node for
each child tag. This algorithm finds the maximal branching on a
weighted directed graph G = (V,E), where a branching is defined
as a set B of edges such that:

(1) If (x1, y1) ∈ B and (x2, y2) ∈ B are distinct edges, then
y1 6= y2. In other words, each node has at most one incident
edge.

(2) B does not contain a cycle.

We do not, however, need to implement the full algorithm.
Instead, we just scan through all the nodes, and for each node
and each scored set of parents, take the parent with maximal
score, which can be accomplished in O(|E|) time rather than the
O(|E| log |M |) time required for the Edmonds algorithm. Thank-
fully, this algorithm produces the optimal forest, as we prove in
Theorem 1.

THEOREM 1. Given a pruned set of potential parents, the prob-
lem of finding the maximum total weight set of edges is solved by
simply taking the maximal-weight potential parent for each node.
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Fig. 3. A partial tree beneath the java parent tag. Initial soft subset analysis produces the tree at left with many redundant edges. By removing these edges,
we arrive at a simpler tree, shown at right, which better corresponds to actual semantic relationships, and is additionally less costly to traverse.

PROOF. Let G be the weighted directed graph (V,E), consist-
ing of all tags (nodes) V and and all potential child-parent edges
E, but reversed to point from parent to child rather than child to
parent. This graph represents exactly the same relationship, but it
represents trees with the more familiar link from parent to child, as
Tarjan does.

Without loss of generality, we assume thatG is weakly connected
(if it isn’t, we split into weakly connected components, and apply
this proof to each, just as the Chu-Liu/Edmonds algorithm is ap-
plied separately to each connected component). Then, let EPARENT
be the set of edges taken by the algorithm that simply chooses the
maximum-weight parent for each node, if such a parent exists. Let
H be the set of edges taken by the Chu-Liu/Edmonds maximal
branching algorithm [Tarjan 1977].

Notice that there are no cycles in the original graph G, since
only nodes with larger post sets can be parents of nodes with
smaller post sets. Therefore, the only possible strongly connected
components are individual nodes. By Tarjan’s lemma 1, then, each
node v of G(H) —the subgraph with edges G —has at most one
edge (u, v). Furthermore, each weakly connected componentW of
G(H) contains exactly one root component i.e. root node.

Because there is at most one edge (u, v) ∈ H for every node v,
we can specify H by giving at most one u parent for every node
v. We claim that H always specifies this u if v has any potential
parents, and that the u specified in H is always the largest-weight
parent of v.

Let us assume, for sake of contradiction, that there exists some
edge (u, v) in the graph G, but H does not include any edge inci-
dent to v. But thenH is not maximal! The set of edgesH∪{(u, v)}
will still be a branching, because it will not contain two edges in-
cident to a single node, and because there is no way to create a
cycle from the edges in E. Therefore, H must contain (u, v) i.e. H
specifies a parent for every node v in the graph with at least one
potential parent.

Now let us assume, for the sake of contradiction, that there exists
some edges (u, v) and (u′, v) in the graph G, where the first edge
has greater weight than the second edge does, but that H includes
edge (u′, v). Certainly, because H is a branching, H \ {(u′, v)} is
a branching as well, which does not contain any edge incident to

v. Therefore, H ′ = (H \ {(u′, v)}) ∪ {(u, v)} is a branching as
well, since it includes only one edge incident to v and no cycles are
possible from the edges inE. Notice thatH ′ has larger weight than
H , contradicting the assumption of optimality of H .

Therefore, we have shown that H must include one parent for
each node v if any possible parent u exists (i.e. there exists node u
such that (u, v) ∈ E), and furthermore that this u must be chosen
as the node whose edge to v has maximal weight. This is exactly
how the set EPARENT is constructed, so H = EPARENT.

6. RESULTS

Validations for these models are difficult to produce because they
rely on true experts to verify the results. Precision is relatively sim-
ple to compute given gold-standard judgments, which can be de-
termined by asking human experts which of the assigned tags are
correct. Finding such experts is expensive, and this task would re-
quire quite a bit of time. However, it is prohibitively expensive to
compute recall with human judgments, since that requires experts
to consider all the possible tags that could have been applied to each
post, and determine which should have been applied.

Our evaluation task is complicated by the fact that we are dealing
with unsupervised learning algorithms (except for the SVM learn-
ing step we tried, which uses a small amount of hand-labeled classi-
fication data for tags). Consequently, we propose a method for eval-
uation, which is completely automated and does not suffer from the
lack of gold-standard data. In particular, we implement one of the
potential applications for tag hierarchies, and compute performance
on that application.

One of the reasons for computing a tag hierarchy in the first place
is that the existing corpus of posts lacks full detail in terms of tag-
ging, particularly in that tags which would occur higher in a hier-
archy are frequently omitted from actual content. We cannot know
for sure which tags are omitted from content without expert judg-
ments, but we can tell whether a tag suggestion engine we imple-
ment would at least save the user time in typing tags. Therefore, we
implement a tag suggestion engine, which trains on the first 2.77
million posts, and tests on the last 223 thousand posts. Any post in
the test set with only one tag is discarded, and then, for each post
in the remaining test set, the suggestion engine is given a randomly
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Fig. 4. Tags for post 1326763 “Table Cell renderer using Nimbus and Scala”. A comparison of the user-defined tags and the tags returned by our subset
hierarchy with a 75% threshold on subset size and 50% threshold. Decreasing the threshold does not alter the suggestions, but it does result in a more accurate
suggestion tree.

chosen subset of tags which is half the size of the true set of tags.
Its recommendations are intersected with the set of hidden tags, and
the percentage of tags found is reported as the precision.

Our suggestion engine simply suggests the parents of all given
tags as the set of new tags, which is similar to one of the methods
of [Cattuto et al. 2008].

Our suggestion validator returned a precision rate of 5.3%; how-
ever, we attribute this largely to the fact that Stack Overflow only
allows a maximum of five tags on any post. This means that users
will tend to pick tags from very different subtrees in order to cover
the entire content of their posts, and therefore our validator is un-
likely to test our suggestions against tags which are similar to the
inputs. If users were able to tag their posts more completely, we
expect our results to improve significantly.

7. CONCLUSIONS

In this paper, we examined the problem of inducing a tag hierar-
chy over a folksonomy. We examined two algorithms which treat
the tag description as a document and then perform standard doc-
ument clustering. These algorithms do not work well, so we used
the soft subset algorithm, which examines the post vector for each
tag and finds relationships between tags based on the intersection
of the posts for two tags. We found that this soft subset relationship
produced superior trees.

8. FUTURE WORK

In the future we would like to validate the tag suggestions using
human experts, which allows us to test the precision of our method
and to develop an on-line algorithm which incorporates improved
tagging as a result of these suggestions into future suggestions.
This closely approximates the methodology that would be taken by
a user-generated content community itself, where the suggestions
would be returned to the creator as tags are being input.

Even this verification system only allows us to test our algo-
rithm’s results for precision, not recall. In order to test recall, we
would need to possess the complete set of tags appropriate to a
particular approach and then verify against this set. A direction of

further research could be to estimate this set efficiently for the pur-
poses of testing recall in the algorithm.

In future work we would like to test on a more general dataset,
which would allow us to leverage Mechanical Turk as a verifica-
tion method. Mechanical Turk verifications need not be limited to
the suggested tags, but could also be made against the hierarchy
itself, to verify that our parent-child relationships are legitimate. A
dataset which allowed for a greater quantity of tags associated with
each post would also improve our automatic suggestion validation
procedure.
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