
Construct:

Programming with Geometry

Sam Gruber

Advisors: Brad Myers, Stephanie Murray

Carnegie Mellon University

May 9, 2014



Construct: Programming with Geometry Sam Gruber

2



Chapter 1

Introduction

A programming language is a tool to help the programmer express a solution to a problem. This tool
is most effective when it can clearly translate the intentions of the programmer into the machine’s
execution process. In most modern programming languages, a program is composed of linear
sequences of text symbols. In domains such as text processing or algebraic computation, there
is a clear correspondence between this representation of tasks and the way that the programmer
imagines them.

However, there are many applications where such a format may not correspond well with the
programmer’s internal model. When the purpose of a program is to manipulate a geometric object,
it is a peculiar burden to place upon the programmer to translate the intuitive spatial model of the
program into a textual form in order to convey it to a computer. A similar disconnect manifests
when parallel or concurrent programs are written in a text format that is still fundamentally singular
and sequential.

Programmers should have the ability to create programs using tools that can represent the mean-
ing of the program as clearly as possible, rather than having to jump through layers of translation.
Enabling programming in these ways can open the field to the contributions of less-conventional
participants, and could make possible new and different understandings of problems and solutions
in computer science.

1.1 Goals

The target audience for Construct is visual professionals, such as architects and designers, who
wish to apply programmatic tools to their existing process. This audience does not necessarily have
experience with modern programming systems, but nonetheless is looking for a way to automate the
generation of geometric forms from other geometric forms. This audience is comfortable thinking
about objects in geometric terms, but may not be accustomed to working in symbolic terms.

Construct is designed to bring programming to this audience, where traditional programming
often does not correspond to the programmer’s mental model. We target four goals for the design
of Construct to help programmers work with the language in a more direct and intuitive way.

3



Construct: Programming with Geometry Sam Gruber

• Make clear the program state. The programmer should be able to directly see the state
of the program in the programming environment, rather than be required to mentally model
the execution of a complex system.

• Work in the native representation of geometric relationships. Data and logic which
is fundamentally geometric in nature should be expressed geometrically, rather than symbol-
ically. The programmer should not be required to internally translate the meaning of the
program to explain it to the computer.

• Specify relationships without inference. The programmer should be able to clearly and
unambiguously present the program to the computer. Inferencing prevents the programmer
from clearly understanding what will actually happen when the program runs.

• Run a full (Turing-complete) range of programs. The medium of programming should
not prevent the programmer from expressing any possible program, though it may be better
suited to producing certain types of programs.

1.2 Related Work

The use of computer systems to manipulate geometry has been an active area of research since Ivan
Sutherland’s work on the Sketchpad system [10]. Greg Nelson’s later work on Juno [6] and com-
mercial development of computer-aided drafting and design software has focused on the application
of constraints to direct manipulation drawing interfaces. These systems have been valuable tools
to aid manual acceleration of geometric work, but fundamentally are only an enhanced version of
pen-and-paper geometric techniques.

Bret Victor has recently spoken [11] on the value of wide-ranging approaches to computer science
and programming. Recent work by Victor [12, 13] has focused on the potential of visual tools which
enable the development of systems with behavior. Victor’s work engages with a data-centric view
of programs, which is effective for representing compositions, but does not show the evaluation
structure of the programs that are being composed.

At the same time, there have been explorations into computer architectures suitable for work
in geometric terms. Tony DeRose’s analysis of coordinate-free geometric calculations [2], though
envisioned in the context of traditional text-based programming languages, provides a model of
geometric computation that more closely corresponds to pen-and-paper geometry. Research into
the Geometric Machine [8] developed a computer system in which the memory is envisioned as a
geometric space rather than the familiar Turing-machine one-dimensional stream of symbols.

Construct aims to synthesize constraint-based geometry, visual tools for programming, and
geometric bases for computation into a platform that engages visual and spatial thinkers and
enables novel approaches to problems in computer science.

4



Chapter 2

Geometric Syntax

Construct proposes a new geometric method for creating programs. Most existing languages offer a
textual syntax for composition, which offers an essentially linear approach to writing programs. A
program in Construct is created by associating geometric objects and relationships in a 2d space.
This allows the programmer to explore the design of a program in a more open manner, and
facilitates the expression of programs which need not have a linear evaluation order.

Furthermore, a geometric syntax provides a format that can easily express problems which have
a geometric or visual interpretation. Points, lines, and circles are all primitive objects in Construct,
and are presented to the programmer visually, harnessing the brain’s highly evolved visual reasoning
systems.

While it is possible to perform symbolic computations in Construct, they are not the target
problem set. Therefore, a programmer might find certain symbolic tasks, such as text manipulation,
as roundabout in Construct as geometric tasks are in a textual syntax.

2.1 The Programming Environment

Because Construct does not use a textual syntax, programs cannot be composed in a text editor.
Rather, they require an environment specifically suited to geometric programming. This section
describes the fundamental characteristics of such an environment and presents a design for its
interface.

Figure 2.1 shows a general design for the interface, highlighting the five important regions:

(A) Menu Bar
The Menu Bar provides access to functionality which has no representation in the language of
the program itself, such as loading or saving programs or starting a live interpreter.

(B) Tool Palettes
Tool Palettes contain commands which create new elements that have meaning in the program.
The three main palettes provide commands for Instantiation (see Section 2.2), Definition (see
Section 2.3) and Modification (see Section 2.4).

5



Construct: Programming with Geometry Sam Gruber

A

B

C

D

E

Figure 2.1: An interface diagram of the programming environment

(C) Program Space
The Program Space shows a data view of the Construct program. It allows the the programmer
to view directly how the program will behave, using representative examples for objects which
are not precisely defined. This programming-by-examples approach mimics the manner in
which geometry is often taught and worked with, reducing the mental load on the programmer
to imagine the meaning of the geometric relationships.

(D) Program Graph
The Program Graph shows the dependency relationships between the objects in Construct.
Since all definitions flow from a group of predefined objects to an-as-yet-undefined object, the
Program Graph produces a directed acyclic graph (DAG).

(E) User Content Drawers
The User Content Drawers contain definitions which have been created by the programmer
as abstractions. The programmer may use these definitions in a similar manner to using the
built-in definitions.

2.2 Object Instantiation

To begin working with any of the objects in Construct, the programmer must first instantiate them.
One tool palette in the programming environment provides commands that instantiate new objects.

When first instantiated, a new Construct object is undefined. A point could have any position
in the two-dimensional space of the program. A line object could have any position and any

6



Construct: Programming with Geometry Sam Gruber

orientation. A circle could have any center position and any radius. Distances and angles can have
any size. A set could have any number of member objects.

Also notice that the instantiation operation does not require the programmer to name the
object. In a textual syntax, names are necessary in order for both the programmer and the parser to
understand what objects are being used at any stage of the program. In Construct, the programmer
can simply see the difference between objects. The system, similarly is free to reference objects
directly, since the programming environment can provide an unambiguous description of which
objects are being used. Naming objects is supported in Construct, for the convenience of the
programmer, but the names are simply discarded for the purposes of execution.

2.3 Applying Definitions

In order for objects to have any meaning, the programmer applies definitions to them. These
definitions establish relationships between the objects in a Construct program. Since definitions
are relationships between objects, almost all of them require multiple objects to be instantiated in
the program space. Section 3.3 lists the definitions which are built into Construct.

Figure 2.2: The interaction to apply a definition to an object

Applying a definition is an infix operation in the programming environment. First, the program-
mer selects the object which will be defined. Then, the programmer selects a definition from a tool
palette in the programming environment. Finally, the programmer selects the objects which are ref-
erenced by the definition. Figure 2.2 shows how these interactions may appear in the programming
environment, using the on definition as an example.

We can imagine a similar statement in a textual language:

Point x = arbitrary_on_line(l);

The effect at runtime of executing this part of the program may not be as linear as the textual
equivalent suggests. In most cases, the object which is being defined will be updated to conform
to the new definition’s requirements, and other data (if not dependent on the object being defined)
will not change.

7



Construct: Programming with Geometry Sam Gruber

However, in some cases, the new definition constrains the object in a way that is unsatisfiable.
In these circumstances, the rest of the program will be recalculated in an attempt to satisfy the
new definition. If this is successful, the programmer may see many objects in the program space
rearrange. If it is unsuccessful, the programmer will be alerted that the definitions are unsatisfiable.
More information about errors is presented in Section 4.3.

2.3.1 Implicit Definitions

Some definitions which are represented explicitly in the internal representation are in fact implicitly
applied in the programming environment. One such definition is the elem definition used to extract
objects from groups. In the geometric syntax, there is no need to explicitly break objects out of
groups, because they are already visible to the programmer in the data view.

We present such definitions alongside the others for completeness in Chapter 3. They preserve
the uniformity of the internal representation, and are therefore valuable to implementers of the
Construct programming environment and interpreter.

2.4 Applying Modifications

2.4.1 Object Modifications

The process of applying object modifications (Section 3.4.1) is quite similar to that of applying
definitions. The programmer first selects the object to be modified, and then selects the modification
from a tool palette.

2.4.2 Definition Modifications

The interactions for definitions modifications vary by modification. Each of them are outlined
below:

not Modification

There are two circumstances when the not modification can be applied. If the programmer wishes
to negate a definition which is currently being applied, then after selecting the definition from the
appropriate tool palette, the programmer may select not from its tool palette. When the definition
application is made, it will be negated.

If the programmer wishes to negate a definition which has already been applied to an object,
the process is similar to the application of object modifications. The programmer first selects the
definition, and then selects not from its tool palette.

8



Construct: Programming with Geometry Sam Gruber

handle Modification

handle requires an existing definition to be defined for the object ρ. The programmer selects this
definition, then selects the handle modifier from its tool palette. The programmer must then select
another definition to serve as the “failure” case of the handle. This definition is automatically
applied to ρ. The programmer must specify reference objects for the definition as in normal
definition application.

each Modification

The each modification must be specified during the initial definition application process. First, the
programmer selects the object to be defined as normal. This object must have type set(τ). Then
the programmer activates the each command from a tool palette, and then selects some definition
δτ appropriate to an object of type τ . Finally, the reference object must be of type set(τ ′), where
τ ′ is the type of the reference object for δτ .

filter Modification

The interaction to apply a filter modification is identical to that of each.

2.5 Creating Local Definitions

Local definitions (see Section 3.5) allow the programmer to wrap up complex derivations of objects
into a single definition without making that internal logic available to other programs. They are
similar to anonymous functions in traditional text-based languages.

l2

l3

l1

a

b

l4

l2

l3

l1

p1
p2

p3

c

l1

l2

l3

a

b

c1

l1

l2

l3

p1

p2

p3

c1

l4

Figure 2.3: The appearance of a local definition in the program space (left) and graph (right)

Local definitions can be created from the beginning in a manner similar to the method of
applying definitions. The programmer selects the object to define, then selects the local tool palette
command. Unlike a predefined definition, the local definition has no references already defined.

9



Construct: Programming with Geometry Sam Gruber

The program space and graph will then appear similar to what is shown in Figure 2.3. The
object which is to be defined will appear locally, marked as final. The programmer may then build
up the objects and definitions used to define the final object. If the programmer references an
object outside the local definition (distinguishable by fading of those objects), that object will
automatically become a reference for the local definition and appear as an initial inside the local
definition.

2.6 Definition, Not Manipulation

It is important to understand that while the Construct programming environment appears in many
ways similar to a vector graphics editor, it does not operate by direct manipulation of objects. The
nature of the objects in the program space is given by definition rules which establish relationships
between the objects. Actually dragging or otherwise transforming the particular objects shown in
the program space, while potentially supported for clarification purposes, will have no effect on the
meaning of a Construct program.

The program space is presented to the programmer to provide an example of the data in the
program at runtime, lifting the burden of mental simulation of the effects of the code. Construct
is therefore not a programming by example [9] system, but rather programming with examples [5].

10



Chapter 3

The Structure of Programs

A program in Construct is a Definition (see Section 3.3) which follows a well-defined procedure to
generate final objects from initial objects. Since a program is a Definition, it can used in other
programs to abstract away higher-level operations used for generating more complex objects.

A program is a tuple:

(O,D,Mρ,Mδ)

O is the set of all objects (see Section 3.1) that are present in the program. D is a function
ρ→ {δ1, δ2, . . .} which, given an object ρ, produces the set of all definitions (see Section 3.3) which
describe ρ. Mρ is a function ρ → {µ1, µ2, . . .} which, given an object ρ, produces the set of all
modifiers (See Section 3.4.1) which describe ρ. Mδ is a function δ → {µ1, µ2, . . .} which, given an
object ρ, produces the set of all modifiers (See Section 3.4.2) which describe δ.

O and D may be combined to generate a directed acyclic graph G. Any valid topological sorting
of G is a valid ordering of runtime execution for the program.

3.1 Objects

An object in Construct is an entity ρ which exists in 2d space. Objects may have position, orien-
tation, magnitude, or any other characteristics which are appropriate based upon their Type (see
Section 3.2).

Objects may be named by user-provided strings. These names will appear in the programming
environment to disambiguate objects in complex algorithms. However, since the visual display of
Construct disambiguates objects in a manner not possible in a text language, naming of objects
is not necessary in simple programs. There are no restrictions on the format of object names (or
even their reuse), as the environment does not rely on names to identify objects.

At any point in the execution of a Construct program, any object is a representative of the
valid parameter set. This is a set which contains all parameter combinations which are valid based
upon the Definitions (see Section 3.3) of the object.

11



Construct: Programming with Geometry Sam Gruber

3.2 Types

Construct is strongly typed and does not support parametric typing in any user-created definitions.
Typing in Construct may also be considered explicit, by nature of the live data representation of
the program state. It is not possible to compose an ill-typed Construct program through the en-
vironment, avoiding an often-confusing category of errors. The types available in Construct are
listed below:

τ ::= pt A point in 2d space.

ln An infinite line in 2d space.

circ A circle in 2d space.

ang An angle in 2d space.

dist A distance in 2d space.

set(τ) A homogeneous collection of objects of type τ .

grp(τ1, . . . , τn) A ordered collection of objects.

We can further distinguish the types of objects into three kinds. pt, ln and circ are literals,
because they correspond to real objects. ang and dist are measures. They correspond to familiar
geometric concepts, but don’t have actual position in the real world, and so behave somewhat
differently in the program space. Finally, set and grp are aggregates, which hold multiple other
objects, allowing for complex data structures.

Additionally, some built-in Definitions (see Section 3.3) accept numerals as parameters. Numer-
als are shown here with a bar, for example n̄ is some integer n. These numerals allow convenient
specification of constant values. Programmer-created definitions can not accept numerals as inputs.

Because Construct is inherently connected to a graphical editing environment, each type listed
above is associated with an iconic representation of its data. In the programming environment (see
Section 2.1), these icons are displayed in tool palettes and denote the commands used to instantiate
new objects of the corresponding type.

The icons shown above were chosen to relate to the programmer’s existing vocabulary of geo-
metric objects, and to be visually distinctive from each other. For example, we can consider the
icons for set and grp: Because sets are homogeneous and unordered, the icon shows an unorganized
cluster of identical triangles. By contrast, since groups are both heterogeneous and ordered, the
icon shows a line, circle and triangle, arranged linearly.

12



Construct: Programming with Geometry Sam Gruber

3.3 Definitions

Definitions are rules that are used to describe an object based upon other objects. All of an object’s
definitions are evaluated at runtime, during Reconciliation (see Section 4.2).

Each Definition is a member of a Definition Class δτ , which is the class of all Definitions that
describe objects of type τ . Each Definition’s inputs and outputs must be a single object, though
groups and sets may be passed. A Definition may be totally described in this notation (group
syntax simplified for brevity):

defname[τ ](ρ1 : τ1; ρ2 : τ2; . . .)

If the Definition is listed as part of a Definition Class (as below), we omit the bracketed type
information for brevity. Additionally, we do not specify the type in our syntax (see Chapter 5)
because it can be derived from context.

Definition icons, like type icons, appear in the tool palettes of the programming interface. They
also appear in the program graph as annotations to the edges in the graph, in order to quickly
explain the relationships between objects in the program.

3.3.1 Generic Definitions

The following Definitions describe objects of any type τ . As noted above, Construct does not
support parametric typing in user-created definitions. Only this small set of built-in definitions are
applicable to all types of objects.

δτ ::= null This definition has no effect on this object.
It may be used with the handle modifier (see
Section 3.4.2).

id(ρ : τ) This object is identical to ρ.

of(s : set(τ)) This object is identical to a member of the
set s. This definition is added implicitly in
the programming environment when the user
manipulates a set member.

elem(m̄; g : group(τ1, . . . , τn)) [impl] This object is the mth object in the group g.
If m > n or τm 6= τ , raise DefErr. This defini-
tion is added implicitly in the programming
environment when the user manipulates an
object inside a group.

The icons that represent these definitions were again chosen to align with symbols familiar to
the programmer. The icon for null bas been chosen to resemble the common slashed-circle negation

13



Construct: Programming with Geometry Sam Gruber

symbol, though special attention was paid to create an icon which is visibly distinct from the similar
icons for cross (see Section 3.3.3).

The id icon was chosen to resemble the mathematical equivalence operator ≡, rather than the
more common equality symbol = because the latter symbol could be easily confused with the usual
symbol for parallel lines, used by par (see Section 3.3.3).

The of symbol, as the extraction device for sets, has an icon very similar to the set type shown
in Section 3.2. A single member of the set is distinguished in the of icon to call attention to its
purpose.

One definition listed here, elem, does not have an iconic representation. This is because both in
the program space and program graph, using an element of a tuple is most clearly presented as an
implicit operation to the programmer. This definition exists only in the internals of the language
and is never exposed to the programmer, and so does not require an iconic representation.

3.3.2 Definitions for pt Objects

δpt ::= on(l : ln) This point occurs somewhere along l.

on(c : circ) This point occurs somewhere along c.

opp(p : pt; l : ln) This point exists on the opposite side of l from
p.

inside(c : circ) This point occurs inside of c.

center(c : circ) This point is at the center-point of c.

to(p : pt; d : dist) This point is at distance d from p.

to(l : ln; d : dist) This point is at distance d from the nearest
location on l.

to(c : circ; d : dist) This point is at distance d from the nearest
location on the circumference of circle c.

Here we see that the built-in definitions may be overloaded to apply to different combinations
of arguments. When this is done, the icons for the definitions do not change, in order to minimize
the number of icons that are shown in the tool palettes. Definitions which are overloaded always
describe logically similar relations between objects.

For example, the on definition is overloaded because a point can be on a line or on a circle. To
require the programmer to think about which object type the point is on is an excessive burden
that does not align with how such relationships are ordinarily discussed in geometry. Though
the internal calculations will be different, Construct exposes a logically consistent interface to the

14



Construct: Programming with Geometry Sam Gruber

programmer which allows such details to be handled transparently by the language.

The on definition is represented by a reticule icon to disambiguate it from several symbols
which may appear similar. × or + are commonly used to indicate point objects in graphics editing
programs; however, these symbols can potentially be confused with the symbols for intersection
(see intr in Section 3.3.3). Therefore, the reticule symbol has been chosen to refer to the alignment
of a point to another object. The circle component of the reticule has been reduced in size to
likewise avoid confusion with the icon for the center definition.

To represent opp and inside, an curved arrow is shown pointing to the zone in which the point
is intended to occur. The curvature of the arrow reinforces the sense of the line or circle as a
boundary applied to the object (which is then being “leapt over”). Additionally, the icon avoids a
straight arrow to avoid the assumption of a distance or direction relation to the referenced objects.

The center definition does make use of a traditional locus symbol, since there is no possibility
of confusion with any of the other symbols presented to the user, due to the surrounding circle.

There were several challenges to the design of the to definition icon. 1) to will be a highly
overloaded definition, having to accommodate all of the possible combinations of input and output
objects; 2) the icon should be visually distinct from the icon representing the dist type; and 3) the
icon should not suggest directionality because distances in Construct are scalar. Therefore, the to
icon shows a point and a line, with a spanning line segment that represents the distance between.
The gaps between the objects and the distance are similar to gaps left in traditional architectural
dimensioning notation.

15



Construct: Programming with Geometry Sam Gruber

3.3.3 Definitions for ln Objects

δln ::= thru(p : pt) This line passes through p.

intr(l : ln) This line intersects l at some location.

par(l : ln) This line is parallel to l.

perp(l : ln) This line is perpendicular to l.

skew(a : ang; l : ln) This line is at angle a to line l.

tan(c : circ) This line has a point of tangency to c at some
location.

cross(c : circ) This line intersects c at two locations.

to(p : pt; d : dist) This line is at distance d from point p at it
closest location.

to(l : ln; d : dist) This line is at distance d to line l at their
closest points. In two dimensions, this implies
par(l).

to(c : circ; d : dist) This line is at distance d from the nearest
location on the circumference of circle c.

The definitions for ln objects continue to resemble symbols used in pen-and-paper geometry to
conform to user expectations. par, perp, and tan should be immediately recognizable to users as
the geometric relationships they represent.

The intr icon was designed so that the intersection of its lines was not at right angles to mini-
mize confusion with perp. Similarly, skew features a slight extension of its lines past the point of
intersection to distinguish it from the sharp-cornered icon for the ang type. The icon representing
cross was likewise designed to be distinct from the icon for null introduced above, by extending the
diagonal line outside the bounds of the circle and orienting it along an opposing diagonal.

16



Construct: Programming with Geometry Sam Gruber

3.3.4 Definitions for circ Objects

δcirc ::= thru(p : pt) This circle passes through p.

about(p : circ) This circle is centered on p.

tan(l : ln) This circle has a point of tangency to l at
some location.

tan(c : circ) This circle has a point of tangency to c at
some location.

cross(l : ln) This circle intersects l at two locations.

to(p : pt; d : dist) This circle’s circumference is at distance d
from point p at it closest location.

to(l : ln; d : dist) This circle’s circumference is at distance d to
line l at their closest points.

to(c : circ; d : dist) This circle’s circumference is at distance d
from the nearest location on the circumfer-
ence of circle c.

Here we can see that many of the icons are reused from complimentary definitions for pt and ln
objects. Notice that the icons from thru and tan are not altered to display circular arcs instead of
lines. The icons remain the same so as not to confuse users by changing the interface in response
to other actions. A programmer should be able to depend on the consistency of the buttons shown
in the tool palette throughout the process of development.

3.3.5 Definitions for ang Objects

δang ::= join(a : ang; b : ang) This angle’s sweep is equal to the sum of the
sweeps of a and b.

split(a : ang; n̄) This angle’s sweep is equal to 1
n times the

sweep of a. If n = 0, raise DefErr.

sweep(n̄) The sweep of this angle is equal to n (in de-
grees).

between(k : ln; l : ln; p : pt) This angle’s sweep is the sweep between the
lines k and l which contains p.

17



Construct: Programming with Geometry Sam Gruber

A particular challenge in designing the icons for Construct was in the design of the definitions
for ang objects. The join and split definitions have a very similar appearance in pen-and-paper
geometry, often disambiguated only by an understanding of the procedure that is being performed.
To clarify the Construct icons, the join icon is presented as the combination of two clearly distinct
angles, having different breadth and also marked with arcs that do not align. In contrast, the icon
representing split shows two angles of identical size, spanned by a single continuous arc. In this way,
the icon for split should evoke the image of an angle bisector, familiar from traditional geometry,
though the Construct definition is more powerful than that technique.

The icon representing sweep shows the mathematical variable n beneath a degree sign, clarifying
the units of the operation and providing a connection to a well-understood geometric concept. When
this definition is applied to an object, the numeric argument is presented in place of n, mimicking
usual geometric notation.

3.3.6 Definitions for dist Objects

δdist ::= sum(d : dist; t : dist) This distance is equal to the sum of the
lengths of d and t.

div(d : dist; n̄) This distance is equal to 1
n times the length

of d. If n = 0, raise DefErr.

length(n̄) This distance is equal to n.

span(p : pt; q : pt) This distance is equal to the distance from p
to q.

span(p : pt; l : ln) This distance is equal to the shortest distance
from p to l.

span(p : pt; c : circ) This distance is equal to the shortest distance
from p to c.

span(k : ln; l : ln) This distance is equal to the shortest distance
from k to l.

span(l : ln; c : circ) This distance is equal to the shortest distance
from l to c.

span(b : circ; c : circ) This distance is equal to the shortest distance
from b to c.

As with ang definitions, the definitions for dist objects presented ambiguities to resolve. The
sum and div definitions are presented in a manner similar to the approach above. sum shows two
clearly different distances, offset from each other, whereas div presents a binary division into two

18



Construct: Programming with Geometry Sam Gruber

identical distances. As with split, div provides greater flexibility than the analogous pen-and-paper
geometry technique, which can only perform binary division.

length is represented in the same manner as sweep above. When applied, the numeric argument
is shown in the definition symbol.

3.3.7 Definitions for set(τ) Objects

δset ::= empty This set has no members.

size(n̄) The number of members of this set.

include(ρ : τ ; s : set(τ)) This set contains all members of the set s and
additionally contains ρ.

exclude(ρ : τ ; s : set(τ)) This set contains all members of the set s ex-
cept ρ. If ρ is not a member of s, raise DefErr.

The definitions of set objects pose a unique challenge to represent in graphical form. Sets,
unlike the other object types which have been previously addressed, are not clearly represented in
a visual data view. Similarly, the operations that are commonly performed on sets do not have a
literal representation in pen-and-paper geometry. Set-based operations are often undertaken solely
in the mind of the geometer during the algorithm, but must be represented in Construct programs.

Therefore, the set icons borrow from non-geometric mathematics. empty uses the common
representation of an empty set as two curly braces enclosing no elements. While this does not
relate directly to geometric views of a set, the icon does avoid an ambiguity with the icons for null
and cross, which resemble the alternative slashed-zero representation of an empty set.

size is represented as finite set cardinality notation in discrete mathematics, and undergoes the
same transformations as the other numeric definitions when applied to a set object.

Solid circles were selected as an abstract representation of set objects for the include and exclude
definitions. The include icon evokes the addition of a smaller, like element to the set, while the void
in the exclude icon shows the removal of an element.

Of the categories of icons presented in this document, the icons for set definitions have the least
visual clarity. An area of future work will be to reconcile the requirements for set icons to produce
symbols which can be clearly recognized by users.

3.3.8 Definitions for grp(τ1, . . . , τn) Objects

δgrp ::= collect(ρ1 : τ1, . . . , ρn : τn) [impl] This group contains ρ1, . . . , ρn.

Like the elem definition (see Section 3.3.1), collect need not be explicitly available in the pro-
gramming environment. Groups are constructed by the group typing tool and visually marked as

19



Construct: Programming with Geometry Sam Gruber

combined objects in the program space and program graph. This definition is used internally by
the implementation.

3.4 Modifiers

Modifiers are higher-level constructs than definitions which further specify program behavior. They
can apply to either objects or definitions, and alter the meaning of each.

Modifiers mark objects and definitions in ways that do not have a clear visual representation
in traditional geometry. Therefore, the icons used in Construct are more symbolic in nature than
those designed for definitions.

3.4.1 Modifiers for Objects

µρ ::= initial ρ is given as an input to the program.

final ρ is the result of the program.

unique The Definitions which specify ρ must resolve
to exactly one possible set of parameters. If
ρ is not uniquely defined, raise DefErr.

The icons designed for initial and final mirror the presentation of those object in the program
graph. While it is possible for definitions to apply to or reference either, in most Construct programs
definitions will only flow from initial objects and toward final objects.

Uniqueness of definition is a constraint that may be useful to programmers to check programs
for logical or input data errors. However, it too has no analog in traditional geometry. Therefore,
the iconic representation is a star, simply denoting that the object is “special” to the program.

20



Construct: Programming with Geometry Sam Gruber

3.4.2 Modifiers for Definitions

µδτ ::= not The negation of this Definition.

handle(δ′τ ) If this Definition raises a runtime error, in-
stead apply δ′τ .

each Applies this Definition over all members of a
set, specifying a new Definition in the class
δset(τ). If DefErr is raised at any point, this
whole definition raises DefErr.

filter Applies this Definition over all members of a
set. If the definition does not raise an error,
include its final object in the new set. Other-
wise, skip that object without raising DefErr.

The icon representing not was selected both to correspond with the negation symbol in some
existing programming languages, but also to remind the programmer that the definition is behaving
in a manner opposite normal expectations. When applied to a definition, the not icon prefixes the
definition’s usual symbol. The bang symbol ! was chosen rather than the logical negation symbol
¬ because the logic symbol is entirely unfamiliar to non-mathematicians, and is also reminiscent of
perpendicular lines, which could cause user confusion.

The handle icon resembles the wavy arrow which is used to represent handling in the program
graph. It suggests a dependency between elements, but that this dependency is looser than usual.

each and filter use representation similar to that used with sets to indicate objects that are
considered or left out in their operations. However, these icons suggest iteration, which is not a
part of the semantics of the modifiers (all computations are strictly independent). A less-sequential
design of these icons would be a valuable future improvement to the presentation of Construct
modifiers.

3.5 Local

λ ::= local(G) Produces a local definition from the program
subgraph G. This can be used in conjunction
with the handle, each and filter modifiers to
apply more complex behaviors.

The design of the local icon mirrors the appearance of the local syntax in the program graph, as
shown previously in Figure 2.3. By boxing the computation that is done inside the local definition,
this representation reinforces the nature of the definition as separate from the main program.

21



Construct: Programming with Geometry Sam Gruber

22



Chapter 4

Execution

4.1 Runtime Errors

ε ::= DefErr A set of Definitions (see Section 3.3) could not be Reconciled (see Section 4.2)
to a valid object.

4.2 Reconciliation

When an object in the Evaluation DAG becomes definable (when all of its immediate prerequisites
are defined), the Construct runtime begins a process of Reconciliation. During Reconciliation the
runtime attempts to find a state for the object which satisfies all of the Definitions applied to it. It
selects a candidate object from the set of all objects which satisfy the constraints placed upon it.

4.3 Failure

During runtime, it is possible for Reconciliation to fail by an object possessing conflicting definitions.

This may initially occur as a result of choices made during the reconciliation of ancestor objects
in the program. The runtime will first try to resolve the failure by redefining these ancestors in a
way that will produce a valid result. If this is unsuccessful, the runtime declares DefErr.

A runtime error is then propagated back along the chain of ancestor definitions from the defini-
tion which triggered it. If the runtime encounters a definition which has a handle modifier attached
to it, it will stop this propagation and attempt to redefine the program using the alternate definition.
This definition itself may fail, which repeats this process on the changed program graph.

If the runtime error propagates all the way to to the initial objects at the top level of the
program, the program has failed. The user should be alerted to the failure, and if the program is
being evaluated in the programming environment, specific debugging information should be made
available.

23



Construct: Programming with Geometry Sam Gruber

24



Chapter 5

How to Program in Construct

In this chapter, we discuss points relevant to prospective programmers in Construct. Common
programming idioms are shown, as well as some examples of functionality that can be built using
the tools we have described previously.

5.1 Idioms

In order to develop programs analogous to those commonly created using modern programming
languages, programmers will make use of idioms in Construct. Here an idiom refers to a commonly-
reused structure in programs that encapsulates a single piece of program logic. Below we present
an example idiom developed within Construct; idioms for other behaviors in modern programming
languages can be developed from the operations provided in Construct.

5.1.1 If Then Else

The idiom for if-then-else, shown in Figure 5.1, is distinguishable primarily in the graph view of a
Construct program. We use a set object to represent the condition of the if: a set containing some
elements represents true, whereas an empty set represents false.

With this definition of true and false, we use two local definitions to encapsulate the definitions
occurring in the then and else branches of computation. In the then branch, we try to take an
element out of the set. If the runtime is able to do this, then the condition must have been true,
and the rest of the then branch definitions can be computed, arriving at some result r.

If the set is empty, then extracting an element will raise DefErr. This is picked up by the handle,
shown in red, which causes the else branch computation to occur, again arriving at some result r.
Then the two branches are unified onto the ultimate result object.

25



Construct: Programming with Geometry Sam Gruber

x

b

x

b

r

x

b

r

e

r

Figure 5.1: An idiom showing if-then-else behavior through the use of a set and handle.

5.2 Example Program

Below is shown an example program that can be written using the features of Construct described
earlier in this document. The example begins with a view of the program in its final form, showing
both the program space with the concluding state of the program and the program graph of the
definition dependencies of the whole program.

Though the program graph is drawn left to right to show the dependencies, it is important to
remember that Construct programs can be composed in any order. The programmer may choose
to begin at the result of the program, and filling in the dependencies until reaching a satisfying
construction. Alternatively, the program may be built from both ends, working the initial and final
values together by creating intermediate objects.

26



Construct: Programming with Geometry Sam Gruber

5.2.1 Triangle Area

p2

p3

p1

l2

two

l1 p4

l6

l3
l4 p5

l5
p6

area

pts

2

l1

l2
l3

l4

l5
l6

p1

p2

p3p4

p5

p6

two
area

Figure 5.2: A Construct program which finds the area of a triangle formed from three input points
using elementary geometric reasoning.

Figure 5.2 shows a program which calculates the area of the triangle in both the program
space and program graph views. In the program graph, the three triangles which are constructed
during the program’s computation are highlighted successively in blue, green and red. This is not
a feature of the Construct programming system, though it may be a useful formatting annotation
in the programming environment.

In brief, this program works by constructing a triangle (p1, p4, p5) which has the same area as
the original triangle, where side p1p4 has length 2. Then a triangle (p1, p4, p6) is constructed which
is a right triangle. Since one leg of the right triangle is length 2, applying the standard formula for
the area of a triangle reveals that the length of the other leg is equal to the area.

27



Construct: Programming with Geometry Sam Gruber

28



Chapter 6

Conclusions

6.1 Future Work

At this time, Construct exists as a general specification of a programming system. Future work on
this system may take many directions, some of which are described below.

6.1.1 Runtime Implementation

This document only describes the behavior of Construct programs. It will be necessary to produce
a working interpreter or compiler than can enable these programs to be actually written and tested.
This runtime system will require a constraint solver that can efficiently step the program forward
so that Construct is a viable alternative to traditional programming languages. Recent research
into evaluation of constrained geometric systems [1, 3, 7] may provide insight into the development
of a performant interpreter.

6.1.2 User Interface

In order to assess the usability of the interface to Construct, future work should explore a prototype
of the programming environment described in Chapter 2. This prototype can then be tested with
the target audience of visual professionals to gauge its effectiveness and gain user feedback on the
design decisions made in the system.

6.1.3 Cut and Paste

An interface challenge to be explored in future work is the functionality of cut and paste. In textual
programming languages, cut and paste can be performed independently of the surrounding text
because there are no explicit linkages. Because Construct programs are presented to the program-
mer as directed graphs, performing cut and paste requires some trade-off between preserving edges
(representing definitions), and maintaining predictability of the command to the programmer.

29



Construct: Programming with Geometry Sam Gruber

There has been some work on interfaces for cut and paste in graphs [4]. Expansion of this work
and adaptations to the particular format of Construct’s program graph will be a valuable addition
to the usefulness of the programming environment. A corresponding cut and paste without the
program space will also need to be developed, which is aware of the dependencies established in
the program.

6.1.4 Higher Dimensions

Presently, Construct has been designed to facilitate geometric procedures solely in a two-dimensional
plane. This is a significant limitation on the problems which are easily represented by the system.
While approaches from projective geometry may be used to simulate working in higher dimensions,
such approaches require the programmer to mentally simulate the true operation of the program,
which falls short of Goal 1 (see Section 1.1). Extension of the design of Construct to three dimen-
sions in future work could alleviate this problem.

6.1.5 Datatypes

Programmers will likely desire to shorthand complex datatypes composed of sets and groups into
single entities. For example, programmers may desire to work with finite-length line segments rather
than infinite lines. Currently, segments must be composed from the existing types in Construct,
which does not create a clean representation of the programmer’s mental model. Future work may
explore adding the facility to Construct for arbitrary higher-complexity datatypes to be reduced to
simpler programmer-created type definitions, possibly with the assistance of a module system.

6.2 Discussion

In Section 1.1 we laid out four goals to help programmers to use Construct. Each of these principles
have shaped the design of this programming system.

6.2.1 Make clear the program state

Construct programs are shown to the programmer in an environment (Section 2.1) which displays
both a graph of the evaluation of the program and a representative state of its objects. Though the
runtime state is shown during composition, some elements of Construct programs are still difficult
to represent in a geometric view. set objects and the effects of branching from handle modifiers do
not have clear geometric analogues, and so may not be clear to the users of Construct.

In ongoing work on the Construct user interface and runtime, we hope to evolve the presentation
of these elements so that users are able to clearly understand these elements.

30



Construct: Programming with Geometry Sam Gruber

6.2.2 Work in the native representation of geometric relationships

Chapter 3 describes the many features in Construct which mimic their traditional pen-and-paper
geometry counterparts. The objects available in Construct have familiar analogs in geometry and
their definitions match the behavior of traditional geometric objects. Additionally, the infix ordering
of definition application mimics the description of geometric relationships in natural language.

However, some elements of Construct are not as familiar to traditional geometry. The handle
modifier described in Section 3.4.2 does not have a meaningful visual representation. It is nonethe-
less representative of the need to perform different constructions based on the nature of the objects
provided as inputs to a problem. In traditional geometry, the logic of this operation is not often
drawn, and so devising a clear visual presentation should be a continuing area of work on Construct.

6.2.3 Specify relationships without inference

Construct is designed to be programmed entirely by specifying unambiguous rules. This method-
ology in designing the language means that we never rely on machine inference, so the evaluation
of the programs is always specified directly by the user.

However, Construct also permits specifications of geometric systems which are ambiguous. Def-
initions may be used in such a way that objects are not uniquely defined, which could make it
difficult for programmers to reason about some programs. Future user testing will allow us to un-
derstand where this may cause problems for users, and modify the language and/or programming
environment to mitigate this confusion.

6.2.4 Run a full (Turing-complete) range of programs

Construct aims to provide its users a fully-powerful programming system. The capability for
branching is provided by the handle modifier, and demonstrated in Section 5.1.1. Since all programs
written in Construct are definitions, the user definition drawers (shown in Section 2.1) allow the
programmer to recursively use other definitions in programs. The existence of these two features
strongly suggests the Turing-completeness of this programming system.

The Construct programming environment has the potential to prevent the development of non-
terminating programs, however. Because the program space shows the runtime state of Construct
programs, a nonterminating program would cause the environment to enter an infinite loop. The
ability to represent nonterminating programs in the environment is an important design consider-
ation for future work on programming interface for Construct.

6.3 Contribution

Construct introduces a new way to program geometric computations. By offering simultaneously
information about the evaluation dependencies and runtime state of a program, Construct provides
programmers with more information about their programs during composition.

Additionally, Construct presents geometric algorithms natively through visual representations,

31



Construct: Programming with Geometry Sam Gruber

including the higher-level logic necessary to explain recursive and branching processes. This alter-
native representation of computations should enable programmers to think about problems in ways
not encouraged by traditional languages, possibly helping to discover new solutions and approaches.

32



Bibliography

[1] Alberti, M. A., Evi, P., and Marini, D. Modelling constrained geometric objects with
OBJSA nets. In Concurrent object-oriented programming and petri nets. Springer Berlin Hei-
delberg, 2001, pp. 319–337.

[2] DeRose, T. D. A coordinate-free approach to geometric programming. In Theory and practice
of geometric modeling. Springer Berlin Heidelberg, 1989, pp. 291–305.

[3] Freixas, M., Joan-Arinyo, R., and Soto-Riera, A. A constraint-based dynamic geom-
etry system. Computer-Aided Design 42, 2 (2010), 151–161.

[4] Ibrahim, B. Optimizing cut-and-paste on directed graphs, with a user-controlled edge recon-
struction strategy. In Visual Languages, 1998. Proceedings. 1998 IEEE Symposium on, (1998),
pp. 90–91.

[5] Myers, B. A. Visual programming, programming by example, and program visualization: a
taxonomy. ACM SIGCHI Bulletin 17, 4 (1986), 59–66.

[6] Nelson, G. Juno, a constraint-based graphics system. ACM SIGGRAPH Computer Graphics
19, 3 (1985), 235–243.

[7] Pion, S., and Fabri, A. A generic lazy evaluation scheme for exact geometric computations.
arXiv preprint cs/060863, 2006.

[8] Reiser, R. H., Costa, A. C. R., and Dimuro, G. P. Programming in the geometric
machine. Frontiers in Artificial Intelligence and Its Applications, Amsterdam: IOS Press 101
(2003), 95–102.

[9] Smith, D. C. Pygmalion: A creative programming environment. PhD thesis, Stanford Uni-
versity, 1975.

[10] Sutherland, I. E. Sketchpad: A man-machine graphical communication system. In Pro-
ceedings of the May 21-23, 1963, spring joint computer conference (1963), pp. 329–346.

[11] Victor, B. The future of programming. http://vimeo.com/71278954, July 2013. [Online;
accessed 11-April-2014].

[12] Victor, B. Media for thinking the unthinkable. http://vimeo.com/67076984, April 2013.
[Online; accessed 11-April-2014].

33



Construct: Programming with Geometry Sam Gruber

[13] Victor, B. Stop drawing dead fish. http://vimeo.com/64895205, April 2013. [Online;
accessed 11-April-2014].

34


